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We propose a tractable Bayesian learning algorithm for Electromagnetic (EM) Structure design using high-dimensional data
structure with Gaussian noise. Our learning method fastly converges on the hypothesis manifold and gives the optimum hypothesis.
Our learning algorithm is scalable, and works on any general electromagnetic structure for automated design. We have tested our
learning algorithm on the real EM data sheet and computed a theoretical upper bound for the uncertainty quantification. The fast
convergence in the hypothesis space is done through various compositions of kernel functions through automatic statistician.
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I. INTRODUCTION

MULTI-dimensional electromagnetic (EM) structures
have been applied to various electronic systems because

they can smartly manipulate EM waves and reduce circuit
sizes [1]. However, increased density of the EM structures
results in narrower system margins with a larger number of
system parameters to be optimized. Consideration of the overall
dimensions with a large number of design variables requires
a substantial computational burden, resulting in long design
cycles [3].

To address the aforementioned problems, we propose a new
tractable Bayesian learning for designing of EM structures on
an automated manner. The method of learning from randomly
sampled minimum data sets using Bayesian Models for giving
maximum-likelihood hypothesis (hML) with error control. The
fast convergence of picking the hML out of myriads of
hypotheses is a difficult problem to solve. To overcome this
issue, we use the method of automatic statistician. Apart from
this, we have verified our learning algorithm for a n × n
metamaterial structure and computed a theoretical upper bound
for uncertainty quantification.

II. PROPOSED APPROACH

A. Methodology

The proposed method of tractable learning using Bayesian
statistics on EM data structure (EMD) is described in Fig. 1.
The EMD is first fed to the Bayesian engine hypothesis in
search of the optimal hypothesis hML. The mean-squared
error is used as a metric to search the hML in the space of
hypotheses. Our method of computing hML is tractable, as the
probability of picking the wrong hypothesis is bounded. The
data from our simulations are corrupted with general noise
model. The uncertainty of the noise model in the simulation
data is not inhibitive to our tractable learning model, though
we have used Gaussian noise for searching the hML. As the
hypothesis space is huge (but finitely countable) and we do not
have any structural information a priori, the choosing of one
hypothesis over other, is equally likely.

Fig. 1: Proposed methodology.

B. Bayesian Learning Model

We write the Bayesian learning as:

P (h | D) =
P (D | h)P (h)

P (D)
(1)

where h is the hypothesis that defines the functional map-
ping, D = {xLi , di} is a data set obtained from full-wave
simulations of an EM structure, xi is the geometry parameter
of the EM structure, di is the output EM response, and L is
the dimensionality [2].

Maximum likelihood hypothesis hML is then given by:

hML = argmax P (D | h) (2)

= argmax

N∏
i=1

P (D | h) (2a)

Assuming the Gaussian noise ∼ N(0, σ2) with identically
distributed (i.i.d.) assumptions and taking natural log on both
sides of the above equation, the hML is given by:
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C. Fast Converging on Hypothesis Tree Structure

We get the bounded mean squared error by greedy searching
the hML from the hypothesis tree structure shown in Fig. 2,
with the automatic statistician. The optimal kernel is selected
by the Bayesian maximum-likelihood using the compositional
application of rules. A grammar is created to efficiently infer
the components and estimate predictive maximum-likelihood.
Then a greedy search algorithm is used choosing the decompo-
sition structure from data by random sampling of all models.
The automatic statistician method then finds the optimum
kernel structure.

Fig. 2: Hypothesis Space with Automatic Statistician.

D. Uncertainty Quantification in Electromagnetic Data

We propose uncertainty quantification (UQ) using Cheby-
chev inequality. Using the Chebyshev inequality framework,
we computed the upper bounds on uncertainties of the EMD.
The problems of extremizing probabilities of error bound, are
subject to the constraints imposed by the assumptions and
information of the data structure. The computed data variance
values of output parameters (fr and µeff ) are 1.895 and 0.002,
respectively.
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where x1, x2, x3, and x4 are dataset notations of geometric

parameters, k is permissible percentage error of hypothesis.

Fig. 3: A schematic diagram of n × n MTM prototype with notations a =
b = x1i , c = x2i , gx = gy = x3i , w = x4i for i = N number of input dataset.

E. Results and Discussions

The proposed method is applied to an n × n metamaterial
structure shown in Fig. 3. We find the hML by using various

combinations of kernels (in Fig. 2) and comparing the MSE.
In the Fig. 4 and 5 MSE values with respect to various
hypothesis functions are shown for topmost 35 random input
geometric parameter samples of n × n MTM prototype (in
Fig. 3). The hML computed for frequency and permeability is
the periodic hypothesis and the minimum MSE are 0.04 and
0.002 respectively. The real EM data is matching quite well
with hypothesis data and also justifies the convergence of our
tractable learning algorithm.

Fig. 4: For fr (a) MSE of various hypotheses functions (b) Machine learning
output and simulated data for topmost samples (xLi ).

Fig. 5: (a) MSE of various hypotheses functions for µeff (b) Machine
learning output and simulated data for topmost samples at 10 GHz.

III. CONCLUSION

We propose a new method of tractable learning using
Bayesian statistics on EM data using Bayesian Models for giv-
ing maximum-likelihood hypothesis through automatic statis-
tician. We successfully mapped (4-in-1) output function f(xLi )
for input data sets {xLi } (L = 4) over di. Our learning archi-
tecture is scalable in time and space complexity and is solely
driven by the input data only. We have tested convergence of
our learning algorithm on the real EM data and propose a
theoretical upper bound for the uncertainty quantification.
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